

Bulk RNA-seq

Introduction to RNAseq Methods

Xabier Bujanda Cundin 12/07/2023

HTS Applications - Overview

DNA Sequencing

- Genome Assembly
- SNPs/CNVs identification
- DNA methylation
- **DNA-protein interactions** (ChIPseq)
- Chromatin Modification (ATAC-seq/ChIPseq)

RNA Sequencing

- Transcript Assembly
- **Differential Gene**

Expression

- **Fusion Genes**
- Splice Variants
- Protein-RNA interactions (iCLIP)

Single Cell

- RNA/DNA
- Low RNA/DNA detection level
- Cell-type identification
- Dissection of

heterogeneous cell

populations

RNAseq Workflow

Experimental Design

Library preparation

Sequencing

Bioinformatics Analysis

Nature Reviews | Genetics

Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10, 57–63 (2009

Designing the right experiment

A good experiment should:

Have clear objectives

THE THON INSTITUTE OF GENETICS AND MEDICIN

Igem

- Have sufficient statistical power
- Be amenable to statistical analysis
- Be reproducible

Designing the right experiment

- A good experiment should:
- Have clear objectives
- Have sufficient statistical power
- Be amenable to statistical analysis
- Be reproducible

Practical considerations:

- Coverage \rightarrow How many reads?
- Read length and structure
- Batch effect consideration
- Library preparation method selection

Designing the right experiment – Replication

Biological Replication

- Accounts for biological variations between individuals
- Sampling bias

Each replicate comes from an independent individual

Please, process as many samples as possible

Technical Replication

- Accounts the variation due to imprecision in the technique
- Technical noise

Replicates are from the same individual but processed separately

Designing the right experiment – How many reads?

Coverage is defined as:

Read Length x Number of reads Length of Target Sequence

Considerations

- For general differential expression: 5-25 million reads per sample lacksquare
- For alternative splicing and low expressed genes: 30-60 million reads per sample \bullet
- In-depth view of the transcriptome/assemble new transcripts: 100–200 million reads \bullet
- Targeted RNA expression requires fewer reads. ullet
- miRNA-Seq or Small RNA Analysis require even fewer reads. \bullet

If working with tight budget: Samples >>> Coverage

Designing the right experiment – Read length

Short or long read sequencing? Paired or Single end reads?

Gene expression \rightarrow 75 bp; Short read \bullet

The second secon

ligem

- Transcriptome Analysis \rightarrow longer paired-end reads (2 reads x 75 bp each) ullet
- Small RNA Analysis \rightarrow short single-end reads lacksquare
- Novel isoforms and splicing regulation \rightarrow Long read sequencing (10.000 bp) \bullet

Single-end sequencing Paired-end sequencing

Designing the right experiment – Batch effects

- Batch effects are technical sources of variation that have been added to the samples during handling ullet
- Batch effects are problematic if they are confounded with the experimental variable. ullet

Designing the right experiment – Batch effects

- Batch effects are technical sources of variation that have been added to the samples during handling
- Batch effects are problematic if they are confounded with the experimental variable.
- Batch effects randomly distributed across variables can be controlled
- Randomize all steps in order to avoid batch effects

Experimental design 1

Experimental design 2

Designing the right experiment – Batch effects

- Batch effects are technical sources of variation that have been added to the samples during handling
- Batch effects are problematic if they are confounded with the experimental variable.
- Batch effects randomly distributed across variables can be controlled
- Randomize all steps in order to avoid batch effects

Record every single potential batch effect condition: Technician, days of sample extraction, cell passage...

RNAseq Workflow

Experimental Design

Library preparation

Sequencing

Bioinformatics Analysis

Nature Reviews | Genetics

Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. *Nat Rev* Genet 10, 57–63 (2009

Library Preparation

1. PolyA + RNA capture

TELETHON INSTITUTE OF GENETICS AND MEDICINE

ligem

- 2. RNA fragmented and primed
- 3. First strand cDNA synthesized
- 4. 3' and 5' ends repaired
- 5. Adapters ligation
- 6. PCR amplification

500 pg to 50 ng rRNA-depleted or poly(A)⁺ RNA

RNAseq Workflow

Experimental Design

Library preparation

Sequencing

Bioinformatics Analysis

Nature Reviews | Genetics

Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. *Nat Rev* Genet 10, 57–63 (2009

Sequencing

TELETHON INSTITUTE OF CONTROL OF CONTROL AND MEDICINE

ligem

https://emea.illumina.com/science/technology/next-generation-sequencing/sequencing-technology.html

Introduction to RNAseq Methods

Conesa, A., Madrigal, P., Tarazona, S. et al. A survey of best practices for RNA-seq data analysis. Genome Biol 17, 13 (2016)

Data processing

Statistical and functional analysis

Different data processing methods answer different biological questions

Starting file: .fastq file

TELETHON INSTITUTE OF GENETICS AND MEDICINI

Igem

@A00560:228:HM7HMDRXY:2:2101:3061:1000 1:N:0:AGTTGA+NTTACA @A00560:228:HM7HMDRXY:2:2101:3513:1000 1:N:0:AGTTGA+NTTACA

@A00560:228:HM7HMDRXY:2:2101:6840:1000 1:N:0:AGTTGA+NTTACA

@A00560:228:HM7HMDRXY:2:2101:29188:1000 1:N:0:AGTTGA+NTTACA

@A00560:228:HM7HMDRXY:2:2101:30581:1000 1:N:0:AGTTGA+NTTACA NTCCTTGCCTTCTTTACTCGGCGTGCTCCTTTTCTCTTTGGGTTTCTTGTTTACCAAAGAAGAGTTTACAGACAATAAAATGGAAAGGTCCTGCTGTGGAA

@A00560:228:HM7HMDRXY:2:2101:2275:1016 1:N:0:AGTTGA+NTTACA CGAGGCAGCCGGCTCATAAAGGTTCATTTGGACAAAGCACAGCAGAACAATGTGGAACACAAGGTTGAAACTTTTTCTGGTGTCTATAAGAAGCTCACAGG

Starting file: .fastq file

@A00560:228:HM7HMDRXY:2:2101:30581:1000 1:N:0:AGTTGA+NTTACA NTCCTTGCCTTCTTTACTCGGCGTGCTCCTTTTCTCTTTGGGTTTCTTGTTTACCAAAGAAGAGTTTACAGACAATAAAATGGAAAGGTCCTGCTGGGAA

First line: Always begins with an @ followed by an identifier sequence and an optional description

Second line: Raw sequence letters

Third line: Begins with a plus symbol (optionally followed by the sequence identifier)

Forth line: Quality scores for each sequence letter. Must have the same length of the second line

- How quality (Q) of a read is computed? \rightarrow Q = -10*Log (P);
 - Being P the probability of a base being called incorrectly

Quality Control: FastQC

Sequence Quality Histograms

The mean quality value across each base position in the read.

Adapter Content

Help

Y-Limits: 💽 on

TELETHON INSTITUTE OF GENETICS AND MEDICINE

ligem

Alignment / Mapping: De novo Alignment

- 1. Extract and count K-mers (substrings of length k contained in a sample)
- 2. Assemble initial contigs

A TATA I TELETHON INSTITUTE OF GENETICS

ligem

- 3. Cluster overlapping contigs
- 4. Resolve alternating splicing and paralogous transcripts for each cluster

TELETHON INSTITUTE OF GENETICS AND MEDICINE

ligem

Alignment / Mapping: BAM file

Gene Quantification

• The abundance level of a gene is measured by the number of reads that map to that gene

	sample1	sample2	sample3	sample4	•••
gene1	999	701	616	595	
gene2	532	520	41	26	
gene3	14	36	305	322	
•••					

Gene Quantification

TELETHON INSTITUTE AND MEDICINE IGEN

^	SH_WT_ND_1	SH_WT_ND_2	SH_WT_ND_3	SH_WT_ND_4	SH_CDKL5_KO_ND_1	SH_CDKL5_KO_ND_2	SH_CDKL5_KO_ND_3	SH_CDKL5_KO_ND_4	H_WT_D_1
ENSMUSG0000001023	0	0	1	0	0	0	0	0	
ENSMUSG0000001025	141	61	88	88	241	149	96	62	4
ENSMUSG0000001027	0	0	0	0	0	0	0	0	
ENSMUSG0000001029	0	0	0	0	0	0	0	0	
ENSMUSG0000001034	8	0	3	4	7	2	3	3	
ENSMUSG0000001036	55	31	38	61	31	38	46	18	3
ENSMUSG0000001039	2	0	0	0	0	1	1	0	
ENSMUSG0000001052	19	6	9	10	16	18	9	4	
ENSMUSG0000001053	0	0	0	0	0	0	0	0	
ENSMUSG0000001054	0	0	0	0	0	0	0	0	
ENSMUSG0000001056	39	16	10	27	49	62	43	59	3
ENSMUSG0000001062	0	0	0	0	0	1	0	0	
ENSMUSG0000001065	1	0	0	0	0	0	0	0	
ENSMUSG0000001076	0	0	0	0	0	0	0	0	
ENSMUSG0000001082	0	0	0	0	0	0	0	0	
ENSMUSG0000001089	111	76	95	106	95	120	115	86	6
ENSMUSG0000001095	0	0	0	0	0	0	0	0	
ENSMUSG0000001098	0	0	0	0	0	0	0	0	

Gene Quantification

TELETHON INSTITUTE AND MEDICINE IGEN

^	SH_WT_ND_1	SH_WT_ND_2	SH_WT_ND_3	SH_WT_ND_4	
ENSMUSG0000001023	0	0	1	0	ŀ
ENSMUSG0000001025	141	61	88	88	
ENSMUSG0000001027	0	0	0	0	
ENSMUSG0000001029	0	0	0	0	
ENSMUSG0000001034	8	0	3	4	
ENSMUSG0000001036	55	31	38	61	
ENSMUSG0000001039	2	0	0	0	
ENSMUSG0000001052	19	6	9	10	
ENSMUSG0000001053	0	0	0	0	
ENSMUSG0000001054	0	0	0	0	
ENSMUSG0000001056	39	16	10	27	
ENSMUSG0000001062	0	0	0	0	
ENSMUSG0000001065	1	0	0	0	

low to represent the results?

	Normalization method	Description	Accounted factors	Recommendations fo use
?	CPM (counts per million)	counts scaled by total number of reads	sequencing depth	gene count comparisons between replicates of the same samplegroup; NOT for within sample comparisons or DE analysis
	TPM (transcripts per kilobase million)	counts per length of transcript (kb) per million reads mapped	sequencing depth and gene length	gene count comparisons within a sample or betwee samples of the same samp group; NOT for DE analy
	RPKM/FPKM (reads/fragments per kilobase of exon per million reads/fragments mapped)	similar to TPM	sequencing depth and gene length	gene count comparisons between genes within a sample; NOT for betwee sample comparisons or DE analysis
	DESeq2's median of ratios [1]	counts divided by sample-specific size factors determined by median ratio of gene counts relative to geometric mean per gene	sequencing depth and RNA composition	gene count comparisons between samples and for DE analysis ; NOT for within sample comparisons
	EdgeR's trimmed mean of M values (TMM) [2]	uses a weighted trimmed mean of the log expression ratios between samples	sequencing depth, RNA composition, and gene length	gene count comparisons between and within samples and for DE analysis

oarisons. es of the ир; **NOT**

ations for

