

Introduction to single cell RNA-seq

Xabier Bujanda Cundin 17/07/2023

Why single cell?

ligem

- **Cell:** the smallest unit that can live on its own and lacksquarethat makes up all living organisms and the tissues of the body
- Identification of cell types and state in a heterogeneous sample
- Assess differences between and within cell types ullet

Challenges:

- Huge amount of data to handle lacksquare
- Low read depth ullet
- High variability between cells/samples \bullet
- Data processing, analysis, presentation and interpretation

Jovic, D, Liang, X, Zeng, H, Lin, L, Xu, F, Luo, Y Single-cell RNA sequencing technologies and applications: A brief overview. Clin Transl Med. 2022; 12:e694. https://doi.org/10.1002/ctm2.694

scRNA-seq data can answer multiple biological questions

- Cell populations
- Expression differences cell clusters and conditions
- Time-series gene expression
 development

But...

ATATA TELETHON INSTITUTE OF GENETIK

llgem

- Low number of transcripts can be detected
- Some cell types may not be compatible for some scRNA-seq techniques
- Low expressed transcript may not be detected

Cell Reports

Molecular signatures and cellular diversity during mouse habenula development

Graphical abstract

Authors

Lieke L. van de Haar, Danai Riga, Juliska E. Boer, ..., Frank J. Meye, Onur Basak, R. Jeroen Pasterkamp

Correspondence

r.j.pasterkamp@umcutrecht.nl

In brief

van de Haar et al. characterize cell populations of the developing mouse habenula using single-cell RNA sequencing. They reconstruct the developmental trajectories of molecularly distinct neuronal subsets and establish physiological and connectivity properties of *Cartpt* neurons. Their analysis indicates a possible link between developing habenula neurons and human psychiatric disorders.

Highlights

- scRNA-seq reveals cellular heterogeneity of the developing mouse habenula
- Trajectory inference reconstructs developmental paths of habenula cell types
- Cartpt marks physiologically distinct neurons that innervate the dorsal IPN
- Developing habenular cell types align to risk loci of human psychiatric disorders

1. Introduction

HELETHON INSTITUTE OF GENETICS AND MEDICINE

ligem

Single cell RNA-seq technologies

Svensson, V., Vento-Tormo, R. & Teichmann, S. Exponential scaling of single-cell RNA-seq in the past decade. Nat Protoc 13, 599–604 (2018). https://doi.org/10.1038/nprot.2017.149

TELETHON INSTITUTE AND MEDICINE IGEN

Single cell RNA-seq technologies

TABLE 1 Comparison of different single-cell RNA sequencing (scRNA-seq) technology and experimental protocols											
Platforms	Isolation strategies	Tissue	Cell numbers	Targets	UMI	Amplification methods	Region	Published year			
Smart-seq	FACS	Dissociated cell	Hundreds of cells	/	×	PCR	Full-length	2012			
Smart-seq2	FACS	Dissociated cell	Hundreds of cells	/	×	PCR	Full-length	2013			
Fluidigm Cl	Micro-fluidic	Dissociated cell	Hundreds of cells	No poly(A) minus RNA detection	×	PCR	Full-length	2013			
Drop-seq	Microdroplets	Dissociated cell	Large number of cell	No poly(A) minus RNA detection	V	PCR	3' end	2015			
10x Genomics	Microdroplets	Dissociated cell	Large number of cells	No poly(A) minus RNA detection	\checkmark	PCR	3' end	2016			
MATQ-seq	FACS	Dissociated cell	Hundreds of cells	No poly(A) minus RNA detection	V	PCR	Full-length	2017			
Seq-Well	Micro-fluidic	Dissociated cell	Large number of cells	No poly(A) minus RNA detection	\checkmark	PCR	3' end	2017			
CEL-seq	FACS	Dissociated cell	Hundreds of cells	No poly(A) minus RNA detection	V	IVT	3' end	2012			
MARS-seq	FACS	Dissociated cell	Hundreds of cells	No poly(A) minus RNA detection	\checkmark	IVT	3' end	2014			
inDrop-seq	Microdroplets	Dissociated cell	Large number of cell	No poly(A) minus RNA detection	V	IVT	3' end	2015			
DNBelab C4	Microdroplets	Dissociated cell	Large number of cells	No poly(A) minus RNA detection	V	PCR	3' end	2019			

1. Introduction

SMART-seq technology

- Cell separation through FACS
- Library preparation by cell
- Poor depth

ligem

• Whole gene sequencing (isoforms identification)

Bagnoli, J.W., Ziegenhain, C., Janjic, A. *et al.* Sensitive and powerful single-cell RNA sequencing using mcSCRBseq. *Nat Commun* **9**, 2937 (2018).

1. Introduction

TELETHON INSTITUTE OF GENETICS AND MEDICINE

ligem

10X Genomics technology

Zheng, G., Terry, J., Belgrader, P. et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun 8, 14049 (2017). https://doi.org/10.1038/ncomms14049

TELETHON INSTITUTE OF GENETICS AND MEDICINE

2. Analysis tools

Platforms:

- Seurat (R)
- Scanpy (Python)
- Galaxy (webtool)
- Scater + scran (R, **Bioconductor**)
- Monocle3 and psupertime (R)

Zappia, L., Theis, F.J. Over 1000 tools reveal trends in the single-cell RNA-seq analysis landscape. Genome Biol 22, 301 (2021). https://doi.org/10.1186/s13059-021-02519-4

3. Seurat

3. Seurat

Experimental Design

- Replication and randomization
- Be aware of potential biases that can affect the results •
- Record any factor for downstream correction

Confounded design

Baran-Gale J, Chandra T, Kirschner K. Experimental design for single-cell RNA sequencing. Brief Funct Genomics. 2018 Jul 1;17(4):233-239. doi: 10.1093/bfgp/elx035.

Data Analysis Overview

Cellranger

Cellranger, Seurat

Seurat

Seurat::FindVariableFeatures()

Seurat::ScaleData()

Seurat

Seurat, SingleR, monocle3, psupertime, ClusterProfiler

Counting

```
#Export path to make cellranger 7.1.0 avaliable
export PATH=$PATH:/home/tigem/software/cellranger-7.1.0
 Define the path to the main directory containing the subfolders with input fil
main dir="/home/tigem/x.bujandac/Polishchuk_scRNAseq/MAN2-HRP_TC_sc"
 Loop through each subfolder
for subfolder in "$main dir"/*; do
       echo "Processing files in $subfolder..."
       # Run cellranger count on the files in the subfolder
       cellranger count --id=$ (basename "$subfolder")
       --transcriptome=/home/tigem/x.bujandac/Polishchuk scRNAseq/GRCh38 \
       --fastqs=$subfolder \
       --sample=$(basename "$subfolder") \
       --localcores 8 \
       --localmem 64
       echo "Finished processing files in $subfolder."
       echo
 one
```

	Cell1	Cell2	 CellN	
Gene1	3	2	13	
Gene2	2	3	1	
Gene3	1	14	18	
	•			
GeneM	25	0	0	

Quality Control

THEFTER DE CENERICS DE GENERICS IGENERICS IGENERICS

Differences among samples in:

- nFeatures and nCounts
- Eventual apoptotic cells
- Ceck for ribosomal genes and blood related genes

Quality Control

Create Seurat Object counts <- CreateSeuratObject(counts = counts, meta.data = metadata, project = "scRNAseqBE")

#calculate the % of mitocondrial genes for each cell counts <- PercentageFeatureSet(counts, "^MT-", col.name = "percent_mito")

#calculate the % of ribosomal genes for each cell counts <- PercentageFeatureSet(counts, "^RP[SL]", col.name = "percent_ribo")

Percentage hemoglobin genes - includes all genes starting with HB except HBP. counts <- PercentageFeatureSet(counts, "^HB[^(P)]", col.name = "percent_hb")

#Plot basic statistics feats <- c("nFeature_RNA", "nCount_RNA", "percent_mito", "percent_ribo", "percent_hb")</pre> NoLegend()

```
VlnPlot(countsFiltered, group.by = "orig.ident", features = feats, pt.size = 0.1, ncol = 3) + 1
```


Data Normalization and Scaling

There are different ways to normalize data:

Logaritmic normalization:

 $\mathbf{X}_{i} = \frac{The \, read \, count \, of \, gene \, X \, in \, cell \, i}{Total \, counts \, of \, cell \, i} \times 10^{4} \, (Eq. 1)$

 $f(x_i) = ln(x_i + 1)$ (Eq.2)

CPM, TPM, RPKM (old but gold)

Sctransform: Normalization and variation control in one step

Work well under the assumption that the amount of RNA is the same in all cells and a uniform scaling factor is applicable for all genes

Provides an excellent tool to not only normalize data, but also stabilize variance and regress variation

unwanted

Feature selection


```
Identify several genes that exhibit
                                  \bullet
                                     high variability between cells
 LYZ
                                    Simple mathematical model to detect
  FTL
                                    the most variable genes
FTH1

    Non-variable count: 11714

                                    These most variable genes represent
                                  ullet
       • Variable count: 2000
                                    the features to prioritize for the
                                    downstream analysis
           # Identification of highly variable features (feature selection)
           seu <- Seurat::FindVariableFeatures(seu,</pre>
                                                 selection.method = "vst",
                                                 nfeatures = 2000)
           #Identification of most expressed genes
           # Identify the 10 most highly variable genes
          top10 <- head(Seurat::VariableFeatures(seu), 10)</pre>
           top10
          #Plot
           vf_plot <- Seurat::VariableFeaturePlot(seu)</pre>
           Seurat::LabelPoints(plot = vf_plot,
                                points = top10, repel = TRUE)
```


PC_2

NKG7 PRF1 CST7 GZMB GZMA FGFBP2

CTSW

SPON2

CCL4 GZMH

FCGR3A CCL5

CD247 HLA-DRB

CD37

HLA-DQA2 HLA-DPB1 HLA-DMA

HLA-DRB1 CD79B LINC00926 HLA-DRA

HLA-DQB1 HLA-DQA1

TCL1A MS4A1

D74

B2M

Linear Dimensional Reduction

 PC_1

TELETHON INSTITUTE OF GENETICS I GENETICS I GENETICS I GENETICS

#======== Dimensional Reduction =======# # PCA countsFiltered <- RunPCA(countsFiltered, features = VariableFeatures(object = countsFiltered))

PC_3

PCA is a statistical technique for reducing the dimensionality of the dataset by linearly transforming the data into a new coordinate system where most of the variation in the data can be described

PC_2

Linear Dimensional Reduction

 PC_1

TELETHON INSTITUTE OF GENETICS IGENETICS IGENETICS

#======== Dimensional Reduction =======# # PCA countsFiltered <- RunPCA(countsFiltered, features = VariableFeatures(object = countsFiltered))

NKG7 PRF1 CST7 GZMB GZMA FGFBP2 CTSW GNLY B2M SPON2 CCL4 GZMH ECGB34

FCGR3A

CD37

CCL5 CD247 HLA-DRB5

HLA-DQA2 HLA-DPB1 HLA-DMA CD74

HLA-DRB1 CD79B LINC00926 HLA-DRA HLA-DQB1 HLA-DQA1 TCL1A MS4A1

D794

PC_3

Non - Linear Dimensional Reduction

ATATA INSTITUTE

ligem

Adapted from https://satijalab.org/seurat/articles/pbmc3k_tutorial.html

```
countsFiltered <- FindNeighbors(countsFiltered, dims = 1:10)
countsFiltered <- FindClusters(countsFiltered, resolution = 0.5)
head(Idents(countsFiltered), 5)
```

```
#Run UMAP
countsFiltered <- RunUMAP(countsFiltered, dims = 1:6)
```

```
# individual clusters
DimPlot(countsFiltered, reduction = "umap", label = TRUE, repel = TRUE)
```

First we need to cluster cells!

Clustering groups a set of objects in a way that objects in the same group (cluster) are more similar to each other than to those in other groups

Non - Linear Dimensional Reduction

We can take advantage of these methods to identify potential bath effects

Finding Differentially Expressed Features

find all markers of cluster 8 cluster8.markers <- FindMarkers(countsFiltered, ident.1 = 8, min.pct = 0.25)

Finding Differentially Expressed Features

0

you can plot raw counts as well
VlnPlot(pbmc, features = c("NKG7", "PF4"), slot = "counts", log = TRUE)

Finding Differentially Expressed Features

FeaturePlot(pbmc, features = c("MS4A1", "GNLY", "CD3E", "CD14", "FCER1A", "FCGR3A", "LYZ", "PPBP", "CD8A"))

Assigning Cell Identities to Clusters

TELETHON INSTITUTE OF GENETICS AND MEDICINE

ligem

Adapted from https://satijalab.org/seurat/articles/pbmc3k_tutorial.html

How to assign cell identities:

- Manually ullet
- SingleR
- Using Machine Learning techniques ullet

```
new.cluster.ids <- c("Naive CD4 T", "CD14+ Mono", "Memory CD4 T", "B", "CD8 T", "FCGR3A+ Mono",</pre>
    "NK", "DC", "Platelet")
names(new.cluster.ids) <- levels(pbmc)</pre>
pbmc <- RenameIdents(pbmc, new.cluster.ids)</pre>
DimPlot(pbmc, reduction = "umap", label = TRUE, pt.size = 0.5) + NoLegend()
```


Assigning Cell Identities to Clusters

Adapted from https://satijalab.org/seurat/articles/pbmc3k_tutorial.html

DimPlot(pbmc, reduction = "umap", label = TRUE, pt.size = 0.5) + NoLegend()

Pseudotime Analysis

Melania Franchini and others, Single-cell gene set enrichment analysis and transfer learning for functional annotation of scRNA-seq data, NAR Genomics and Bioinformatics, Volume 5, Issue 1, March 2023,

Introduction to single cell RNA-seq

Xabier Bujanda Cundin 17/07/2023

