

Telethon Institute of Genetics and Medicine Via Campi Flegrei, 34 80078 Pozzuoli, Napoli (Italy)

GOOD PLOTS FOR PUBLICATION

Bioinformatics Awareness Days @ TIGEM July 10th, 2023

Eugenio Del Prete, M. Eng., Ph.D. BIOINFORMATICS CORE *e.delprete@tigem.it*

E. Del Prete

July 10th, 2023

Bioinformatics Core: Tasks

STATISTICAL DATA ANALYSIS

Experimental Design, Hypothesis Testing, Power Analysis Differential Expression Analysis, Cluster Analysis, Time Series Data Analysis, Survival Analysis, Correlation Analysis

OMICS

Microarray Analysis, Gene Networks, Pathway Analysis, TFBS Identification, Gene Annotation, Integration, Protein Analysis, Drug Networks

NEXT GENERATION SEQUENCING

Whole Exome, Targeted Gene, RNA, miRNA, ChIP, Visualization, Interpretation

DATABASE AND SOFTWARE

DB Creation, DB Maintenance, Web Sites Creation, Web Service Support

BIOINFORMATICS AND (BIO)STATISTICS TRAINING

Bioinformatics Core: People

DIEGO DI BERNARDO

https://www.tigem.it/research/facilities/core-facilities/bioinformatics

https://bioinformatics.tigem.it/

DIEGO CARRELLA

XAVIER BUJANDA CUNDIN EUGENIO DEL PRETE

Bioinformatics Core: Something about Me

TLC ENGINEER @ UNIVERSITY OF ROME 'SAPIENZA' MAIN TOPICS: Signal Processing, Remote Sensing, Bioinformatics THESIS: miRNA Analysis, Genomic Data Mining, Consensus Analysis, PSSM Creation

BIOINFORMATICS RESEARCH FELLOW @ INSTITUTE OF FOOD SCIENCES (CNR) Protein Prediction and Classification, Protein Analysis, Proteomic Mass Spectra Analysis, Sequence Alignment and Phylogenetic Tree, Docking

PHD IN APPLIED BIOLOGY @ UNIVERSITY OF BASILICATA

Celiac Disease and Comorbities, Microarray Data Analysis, Ontologies, Gene Set Enrichment Analysis, Semantic Similarity, Proteomic Mass Spectra Analysis

BIOINFORMATICS RESEARCH FELLOW @ INSTITUTE OF APPLIED MATHEMATICS (CNR) Proteomic Mass Spectra Analysis, Metabolomic (Lipidomic) Data Analysis, Web Tools Developer, Hypothesis Tests, Omics Data Integration

BIOSTATISTICIAN AND DATA SCIENTIST @ TIGEM

Outline

BAD PLOTS

- The Worst Error
- Bad Habits: Examples

GOOD PLOTS

- Good Habits: Rules
- Top Science Visualization Trends in 2022

EXAMPLES

- Example 1: SuperPlot with Prism
- Example 1: SuperPlot with R
- Example 2: PCA with Prism

- Take Home Message
- Final Remarks

Introduction Bad Plots Good Plots Examples Conclusion

E. Del Prete

Introduction Bad Plots Good Plots Examples Conclusion

Good Habits

Audience

- Generic audience
- Specific audience
- Scientific journal

Message

- Express an idea
- Define a problem
- Report a result

Adaptation

Support media

Good Habits

Caption

- Define the figure
- Describe the figure
- Report important values

Default & Colors

- Title
- Background
- Suitable colors

Axes Modification

- Cut-off
- Scaling
- Normalization

Figure 1. Normalized fold change among conditions. The x-axis reports the genes for both the conditions (treatment A, treatment B), the y-axis reports the normalized expression in term of fold change (...) Legend: * p-value < 0.05, ** p-value < 0.01.

E. Del Prete

Good Habits

"Chartjunk"

- No quibbling
- No redundancy
- Use facets

Hints

- State-of-the-art
- Scientific journal rules
- Straight to the goal

Tools

- "Only for the brave"
- Suitable programs

Prism (GraphPad) Matplotlib (Python) Ggplot (R) GIMP (Linux) Paint (Windows) Adobe Photoshop Cytoscape

E. Del Prete

July 10th, 2023

Introduction Bad Plots Good Plots Examples Conclusion

Top Science Visualization Trends in 2022

Top Trends in 2022

- Color blindness palette
- Grey shades (E. Tufte)
- Hybrid chart tables
- Multi panel plots
- Ts error bars
- Axis breaks
- Icon libraries (Biorender)
- Climate stripes
- Space for figures

Example 1: Cell-level Variability and Reproducibility

Suppose to test a treatment that could change the speed of crawling cells

SuperPlot convey more information: replicates, samples, pairment, statistics

E. Del Prete

Example 1: SuperPlot with Prism 9.4.0 (GraphPad)

Upload dataset and mean values

- control-placebo and drug (2 conditions)
- 3 biological replicates per condition (6 samples)
- 50 measurements per sample (300 values)

Depict the jitter plot of the data

- Show the cell-level variability
- Select colors per biological replicates

Depict the error plot of the mean values

- Show the sample-level variability
- Select colors per biological replicates

- 1. File \rightarrow New \rightarrow New Project File \rightarrow Column
- 2. Paste data (one blank cell per replicates)
- 3. Paste mean values
- 4. Rename Data Tables
- Graphs → New Graphs → Table: Data → Individual values: Scatter plot → Plot: No line or error bar
- 6. Define title and labels
- Select first replicate → Change → Format Points → Symbol Color
- 8. Graphs \rightarrow New Graphs \rightarrow Table: Mean \rightarrow Individual values: Scatter plot \rightarrow Mean with SD
- 9. Define title and labels
- 10. Select all → Change → Format Points → Symbol Shape (Symbol Size, Symbol Color)

Example 1: SuperPlot with Prism 9.4.0 (GraphPad)

Superimpose the plots

- Adjust the y-axis (same range)
- Add the statistical significance
- Combine the two levels of variability

0.0146

- 11. Double click on y-axis (Mean) → Left Y axis →
 Deselect 'Automatically...' → Range, Maximum:
 60
- 12. Double click on y-axis (Data) → Left Y axis →
 All ticks, Ticks direction: None & Location: None
 → Same for X axis
- Results → New Analysis → Column Analyses: ttests → Paired
- 14. Draw (Mean) → Format pairwise comparisons
 → Appearance, Display options: P value (numbers) → Lift up the p-value
- 15. Layouts → New Layout → (Standard) → Drag the plots → Select the error plot → Change → Equalize scaling factor → Change...: Increase... → Superimpose the plots
- 16. File \rightarrow Export

Example 1: SuperPlot with R (Shiny app)

Several tools for a	depicting	similar plots
---------------------	-----------	---------------

SuperPlotsOfData - Plots Data and its Replicates

Data unload	Data upload Plot Data Summary About			
Example data (lidy) Upload file	Data as provided Show 10 → entries Search:			
Paste data IPI (rev files only)	Replicate	Treatment	Speed 0	
Data S1 published in the original SuperPlots paper:	1	Control	43.69202	
https://doi.org/10.1083/jcb.202001064	1	Control	41.85664	
	1	Control	49.11707	
Data conversion	1	Control	49.79331	
Convert to tidy	1	Control	41.54301	
Data selection for plotting	1	Control	44.04201	
Data for the x-axis:	1	Control	48.65436	
Treatment	1	Control	51.98613	
Data for the y-axis:	1	Control	46.62238	
Speed	1	Control	51.29257	
Groups/Replicates:	Showing 1 to 10 of 300 entries		Previous 1 2 3 4 5 30 Next	
Replicate				
Select and order:				
Data properties				
Continuous x-axis data				

Example 2: PCA plots with Prism 9.4.0 (GraphPad)

Suppose to discriminate the malignancy of tumor by images of cells from breast cancer tissue biopses

Principal Component Analysis (PCA) provide a dimensionality reduction (linear) method to cope with the presence of multiple features and 'resume' their information

Introduction
Bad Plots
Good Plots
Examples
Conclusion

Example 2: PCA plots with Prism 9.4.0 (GraphPad)

Upload dataset

- malignancy of cells (1 categorical variable)
- 10 features of cells (10 continuous variable)
- 569 cells

Perform PCA

- Select the method for selecting PCs
- Select colors per diagnosis

Adjust the colors for the different plots

- Select colors per Loadings
- Select colors per diagnosis in PC scores
- Select colors and labels in Proportion of variance

- 1. File \rightarrow New \rightarrow New Project File \rightarrow Multip. variables
- 2. Paste data (first row as column names)
- 3. Check the nature of the variables
- Analysis → Analyze → Multiple variable analysis: PCA
- Options → Method for selecting PCs: % of total explained variance (80)
- Output → Additional variables for graphing → Labels: ID Number & Symbol fill color: Diagnosis
- 7. Graphs \rightarrow Select all
- Loadings → Double click on one point → Symbols & Connecting Lines
- 9. PC Scores → Change → Change colors →
 Colors (Double click on one point)
- 10. Proportion of variance \rightarrow Double click on legend
 - → Bars and boxes & Symbols & Lines

Introduction
Bad Plots
Good Plots
Examples
Conclusion

Example 2: PCA plots with Prism 9.4.0 (GraphPad)

Multiple plot

- Adjust colors and labels
- Assemble plots in one multiple plot

- 11. Layouts → New Layout → (Standard) → Drag the plots → Select PC scores plot → Change → Equalize scaling factor → Change...: Increase...
- 12. Change labels position (if necessary)
- 13. File \rightarrow Export

Take Home Message

Investigating in good figures at the start of your research will save you time and frustration

- Save images as **TIFFs** (not JPGs or other low-quality formats) and **keep all your original files**
- After you have considered the **purpose of your figure**, choose the right graph to represent it

Check **journal guidelines** before you build your figure to save yourself time

Evaluate the necessity of every aspect of your figures and eliminate any unnecessary clutter

Final Remarks

FIGURE QUALITY IS A PAPER'S "SUIT AND TIE".

American Journal Expert (AJE)

Eugenio Del Prete, M.Eng., Ph.D. Biostatistician and Data Analyst Telethon Institute of Genetics and Medicine (TIGEM) Pozzuoli (NA), Italy e-mail: e.delprete@tigem.it

References

Woolston, C. How to dodge the pitfalls of bad illustrations. Nature (2014).
 Rougier, N. Ten Simple Rules for Better Figures. PLoS Comput Biol (2014).
 Lord, S.J. SuperPlots: Communicating reproducibility and variability in cell biology. J Cell Biol (2020).
 Goedhart, J. SuperPlotsOfData - a web app for the transparent display and quantitative comparison of continuous data from different conditions. Mol Biol Cell (2021).
 Friendly, M. The First (Known) Statistical Graph: Michael Florent van Langren and the "Secret" of Longitude. The American Statistician (2010).

[h1] http://www.sthda.com/english/wiki/ggplot2-box-plot-quick-start-guide-r-software-and-data-visualization [h2] https://helenajambor.wordpress.com/2023/01/04/science-visualization-trends-of-2022/

[h3] https://huygens.science.uva.nl/SuperPlotsOfData/

[h4] *https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)*